Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 12(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36556276

RESUMO

Background: Non-small cell lung cancer (NSCLC) is still one of the types of cancer with the highest death rates. MicroRNAs (miRNAs) play essential roles in NSCLC development. This study evaluates miRNA expression patterns and specific mechanisms in male patients with NSCLC. Methods: We report an integrated microarray analysis of miRNAs for eight matched samples of males with NSCLC compared to the study of public datasets of males with NSCLC from TCGA, followed by qRT-PCR validation. Results: For the TCGA dataset, we identified 385 overexpressed and 75 underexpressed miRNAs. Our cohort identified 54 overexpressed and 77 underexpressed miRNAs, considering a fold-change (FC) of ±1.5 and p < 0.05 as the cutoff value. The common miRNA signature consisted of eight overexpressed and nine underexpressed miRNAs. Validation was performed using qRT-PCR on the tissue samples for miR-183-3p and miR-34c-5p and on plasma samples for miR-34c-5p. We also created mRNA-miRNA regulatory networks to identify critical molecules, revealing NSCLC signaling pathways related to underexpressed and overexpressed transcripts. The genes targeted by these transcripts were correlated with overall survival. Conclusions: miRNAs and some of their target genes could play essential roles in investigating the mechanisms involved in NSCLC evolution and provide opportunities to identify potential therapeutic targets.

2.
Cancers (Basel) ; 12(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092068

RESUMO

Breast cancer is one of the most common oncological diseases in women, as its incidence is rapidly growing, rendering it unpredictable and causing more harm than ever before on an annual basis. Alterations of coding and noncoding genes are related to tumorigenesis and breast cancer progression. In this study, several key genes associated with epithelial-to-mesenchymal transition (EMT) and cancer stem cell (CSC) features were identified. EMT and CSCs are two key mechanisms responsible for self-renewal, differentiation, and self-protection, thus contributing to drug resistance. Therefore, understanding of the relationship between these processes may identify a therapeutic vulnerability that can be further exploited in clinical practice, and evaluate its correlation with overall survival rate. To determine expression levels of altered coding and noncoding genes, The Cancer Omics Atlas (TCOA) are used, and these data are overlapped with a list of CSCs and EMT-specific genes downloaded from NCBI. As a result, it is observed that CSCs are reciprocally related to EMT, thus identifying common signatures that allow for predicting the overall survival for breast cancer genes (BRCA). In fact, common CSCs and EMT signatures, represented by ALDH1A1, SFRP1, miR-139, miR-21, and miR-200c, are deemed useful as prognostic biomarkers for BRCA. Therefore, by mapping changes in gene expression across CSCs and EMT, suggesting a cross-talk between these two processes, we have been able to identify either the most common or specific genes or miRNA markers associated with overall survival rate. Thus, a better understanding of these mechanisms will lead to more effective treatment options.

3.
Stem Cell Rev Rep ; 15(4): 519-529, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31123983

RESUMO

Fetal-maternal microchimerism describes the acquisition of fetal stem cells (FSC) by the mother during pregnancy and their long-term persistence after parturition. FSC may engraft in a variety of maternal tissues especially if there is organ/tissue injury, but their role and mechanism of persistence still remains elusive. Clinical applications due to their pluripotency, immunomodulatory effects and accessibility make them good candidates for ex-vivo manipulation and autologous therapies. The hair follicles contain a distinctive niche for pluripotent stem cells (PSC). To date, there is no published evidence of fetal microchimerism in the hair follicle. In our study, follicular unit extraction (FUE) technique allowed easy stem cell cultures to be obtained while simple hair follicle removal by pull-out technique failed to generate stem cells in culture. We identified microchimeric fetal stem cells within the primitive population of maternal stem cells isolated from the hair follicles with typical mesenchymal phenotype, expression of PSC genes and differentiation potential towards osteocytes, adypocites and chondrocytes. This is the first study to isolate fetal microchimeric stem cells in adult human hair long after parturition. We presume a sanctuary partition mechanism with PSC of the mother deposited during early embryogenesis could explain their long-term persistence.


Assuntos
Diferenciação Celular , Quimerismo , Células-Tronco Fetais , Folículo Piloso , Adulto , Feminino , Células-Tronco Fetais/citologia , Células-Tronco Fetais/metabolismo , Feto/citologia , Feto/metabolismo , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Humanos , Gravidez
4.
J BUON ; 23(3): 692-705, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30003739

RESUMO

PURPOSE: Breast cancer is a highly heterogeneous disease with an increasing number of cases resistant to chemotherapy. To increase the response to therapy, different adjuvant systems are tested, like the case of deuterium-depleted water (DDW). METHODS: For this study, we selected as in vitro model the triple-negative breast cancer cell line MDA-MB-231 and we performed a series of microscopy-based functional tests (apoptosis, autophagy assays, senescence detection) and microarray evaluation of the miRNA profile in order to evaluate changes induced by cisplatin and DDW treatment at cellular and molecular level. RESULTS: Cisplatin treatment led to increased mitochondrial activity and autophagy for cells kept in DDW, compared with those in standard conditions (SC). We also observed that cells treated with DDW medium promoted senescence in a higher level than SC. The exosomal miRNAs released in cell culture revealed an altered pattern in the case of cells maintained in DDW compared to SC. CONCLUSION: DDW was proved to be non-toxic, and, when administered with cisplatin, to slightly increase the senescence of cancer cells, therefore, can be pondered as adjuvant therapeutic agent. However, future studies are needed to be done in order to further elucidate its mechanism of action.


Assuntos
Envelhecimento/genética , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Envelhecimento/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Terapia Combinada/métodos , Deutério/metabolismo , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
5.
BMC Genomics ; 17: 576, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506675

RESUMO

BACKGROUND: The gastrointestinal tract is the primary site of toxin interaction, an interface between the organism and its surroundings. In this study, we assessed the alteration of intestinal mRNA profile in the case of co-occurrence of zearalenone (ZEA), a secondary Fusarium metabolite, and Escherichia coli (E. coli), on the intestinal porcine epithelial cells IPEC-1. We chose this model since the pig is a species which is susceptible to pathogen and mycotoxin co-exposure. RESULTS: After treating the cells with the two contaminants, either separately or in combination, the differential gene expression between groups was assessed, using the microarray technology. Data analysis identified 1691 upregulated and 797 downregulated genes as a response to E. coli exposure, while for ZEA treated cells, 303 genes were upregulated and 49 downregulated. The co-contamination led to 991 upregulated and 800 downregulated genes. The altered gene expression pattern was further classified into 8 functional groups. In the case of co-exposure to ZEA and E.coli, a clear increase of proinflammatory mechanisms. CONCLUSIONS: These results demonstrate the complex effect of single or multiple contaminants exposure at cellular and molecular level, with significant implications that might lead to the activation of pathological mechanisms. A better understanding of the effects of co-contamination is mandatory in developing novel exposure regulations and prevention measures.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Zearalenona/farmacologia , Animais , Linhagem Celular , Estrogênios não Esteroides/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Técnicas In Vitro , Análise em Microsséries , Reprodutibilidade dos Testes , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...